Radiosynthesis of Fluorine-18 labeled Albumin: Methodology Towards Developing Peanut Protein Tracer

Massey, N.^{1,2}; Alonso Martinez, L. M.¹; Graham, F.^{1,3,4}, DaSilva, J. N.^{1,2,5}

¹Laboratoire de radiochimie et cyclotron, CRCHUM, Montréal, QC, Canada

²Département de génie biomédical, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
³Département de médecine, Division des allergies et de l'immunologie clinique, CHUM, Montréal, QC, Canada
⁴Département de pédiatrie, Section d'allergie et d'immunologie clinique, CHUSJ, Montréal, QC, Canada
⁵Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, QC, Canada

CENTRE DE RECHERCHE

Disclosures

- There are no known conflicts of interest.
- The authors thank the CRCHUM, Université de Montréal, and CIHR for their financial support to FG and the CGS-M CIHR to NM. We also acknowledge the Laboratoire de Radiochimie et Cyclotron for their contribution to this work.

Background

- There is no accurate method to assess in vivo the pharmacokinetics of food allergens after ingestion [1].
- We are working to develop a clinically relevant reproducible method for radiolabeling Ara h 2, an allergenic peanut protein, responsible for anaphylactic reactions.
- There are currently several methods for radiolabeling peptides and proteins with fluorine-18 for use as a tracer for PET imaging in animals and humans [2].
- In this work, we present a fast and simple semi-automated *optimized* procedure for the ¹⁸F-labeling of **bovine serum albumin (BSA)** via [¹⁸F]fluoro-pyridine-tetrafluorophenol ([¹⁸F]F-Py-TFP) as a proof-of-concept.
- A similar methodological approach was adapted for the ¹⁸F-labeling of the *expensive* Ara h 2 peanut protein.

Downloaded from NCIB. 3OB4:MBP-fusion protein of the major peanut allergen Ara h 2.

Adapted from NCIB. 4F5S: Crystal Structure of Bovine Serum Albumin.

(Aqueous) Method

Radiosynthesis of [¹⁸F]F-Py-TFP

Results – BSA & Ara h 2

Table 1. Optimization of the ¹⁸F-labeling of BSA

Conditions		Radiochemical Purity (%)*	Radiochemical Yield (%)**
Buffer (1µg/µL BSA)	Carbonate-bicarbonate buffer, 0.1M pH 10 (n = 3)	17.3 ± 7.7	6.7 ± 3.2
	Carbonate-bicarbonate buffer, 0.1M pH 9 (n = 2)	12	7
	Borate buffer, 0.1M pH 9 (n = 4)	30.7 ± 9.6	17.1 ± 7.4
Protein Concentration (in borate buffer)	$0.1 \ \mu g/\mu L \ (n = 1)$	No labeling	-
	$0.3 \ \mu g/\mu L \ (n = 1)$	No labeling	-
	$0.5 \ \mu g/\mu L \ (n = 1)$	18	13
	$1.0 \ \mu g/\mu L \ (n = 4)$	23 ± 5.7	8.62 ± 3.1
	$2.0 \ \mu g/\mu L \ (n=2)$	42.5	26.6
Heating time (1µg/µL BSA in borate buffer)	15 minutes (n = 9)	23.7 ± 10.2	12.3 ± 7.1
	25 minutes $(n = 2)$	24	15.5

*Proportions of the peaks from the analytical HPLC

**Decay-corrected to the end of prosthetic group [18 F]F-Py-TFP synthesis, mean \pm SD

Reaction mixture before heating

No successful Ara h 2 radiolabeling was obtained with aqueous method regardless of various conditions attempted (buffer, reaction time, concentration, heating time).

Minutes

(Non-Aqueous) Method & Preliminary Results

- New non-aqueous method, modified from Davis et al. [3]
- Using lyophilized BSA as a proof-of-concept.
 - Achieved higher RCY (up to 32%, decay-corrected to the end of prosthetic group [¹⁸F]F-Py-TFP synthesis) then aqueous method.
- Optimization of non-aqueous method will be adapted for lyophilized Ara h 2.

Conclusions

- Pure [¹⁸F]F-Py-BSA was successfully produced and optimized using an aqueous reaction.
 - No labeling was observed below $0.5\mu g/\mu L$.
 - Most effective labeling buffer was borate buffer.
 - Higher RCY (up to 27%, decay-corrected to the end of prosthetic group [¹⁸F]F-Py-TFP synthesis) were obtained with increasing concentrations of BSA.
 - No successful Ara h 2 radiolabeling with aqueous method regardless of various conditions attempted.
- A non-aqueous method for producing [¹⁸F]F-Py-Ara h 2 is currently in progress using DMSO and DIPEA with lyophilized Ara h 2.
 - Successful radiolabeling of lyophilized BSA with high RCY (up to 32%, decay-corrected to the end of prosthetic group [¹⁸F]F-Py-TFP synthesis).
- Future Directions
 - This translational work chemistry-human has the potential for *in vivo* tracking of peanut proteins via PET imaging and contribute to the understanding peanut allergies.

Adapted from NCIB. 3OB4:MBP-fusion protein of the major peanut allergen Ara h 2.

References

- Turner, P. J., Arasi, S., Ballmer-Weber, B., Baseggio Conrado, A., Deschildre, A., Gerdts, J., Halken, S., Muraro, A., Patel, N., Van Ree, R., de Silva, D., Worm, M., Zuberbier, T., & Roberts, G. (2022). Risk factors for severe reactions in food allergy: Rapid evidence review with meta-analysis. *Allergy (Copenhagen)*, 77(9), 2634–2652. <u>https://doi.org/10.1111/all.15318</u>
- Olberg, D. E., Arukwe, J. M., Grace, D., Hjelstuen, O. K., Solbakken, M., Kindberg, G. M., & Cuthbertson, A. (2010). One Step Radiosynthesis of 6-[18F]Fluoronicotinic Acid 2,3,5,6-Tetrafluorophenyl Ester ([18F]F-Py-TFP): A New Prosthetic Group for Efficient Labeling of Biomolecules with Fluorine-18. *Journal of Medicinal Chemistry*, 53(4), 1732–1740. <u>https://doi.org/10.1021/jm9015813</u>
- Davis, R. A., Drake, C., Ippisch, R. C., Moore, M., Sutcliffe, J. L. (2019). Fully automated peptide radiolabeling from [¹⁸F]fluoride. *Royal Society of Chemistry*, 9(15), 8638-8649. <u>https://doi.org/10.1039/C8RA10541C</u>